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Numerical methods are used to investigate the transient, conjugate, forced convection heat/mass transfer
in multiparticle systems at low to moderate Reynolds numbers. The interparticle interactions have been
accounted for by using the simple cell models. The momentum and heat/mass balance equations were
solved numerically in spherical coordinates system by a finite difference method. The values considered
for the sphere Reynolds number are Re < 100. The computations were focused on the influence of the voi-
dage and physical properties ratios on the heat/mass transfer rate for sphere Peclet number,
10 6 Pe 6 1000.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When Perelman [1] investigated the forced convective heat
transfer in a boundary-layer flow over an internally heated semi-
infinite flat plate with two-dimensional thermal conduction and
interface temperature unknown, he used for the first time the
words conjugate heat transfer. For bodies with spherical symme-
try, the first conjugate heat/mass transfer studies are [2–4]. Using
the boundary-layer formalism, only the case of fluid spheres with
internal circulation at high Peclet numbers was considered. It must
be mentioned that the boundary-layer approximation used in [2–
4] is not entirely similar to that employed for the flat plate [1,5–
10]. For fluid spheres with internal circulation at high Pe numbers,
thin thermal/concentration boundary layers on both sides of the
interface were considered. However, the assumption of infinite
sphere practiced in [2–4], (assumption necessary to justify the sim-
ilarity transformations inside the sphere) is a questionable one. In
spite of this fact, the boundary-layer approximation was recently
used to analysed the conjugate heat/mass transfer from a sphere
in [11–13].

Brounshtein et al. [14] proposed a different approach. The heat/
mass transfer inside the sphere is described by the usual balance
equations (the Kronig–Brink model was used in [14] for circulating
spheres at high Pe numbers), but the boundary condition at the
interface takes into consideration the resistance of the continuous
phase. The external heat/mass transfer coefficient is assumed to be
ll rights reserved.

synet.ro
known and equal to its steady value (the values used are those cal-
culated for the heat/mass transfer from a sphere with constant
temperature/concentration).

For motionless systems, the unsteady conjugate heat/mass
transfer from a sphere was studied in [15–19]. The first numerical
solution for the unsteady, conjugate, forced convection heat trans-
fer from a rigid sphere to an ambient fluid flow was obtained by
Brauer [20]. For values of the thermal diffusivity ratio greater or
equal to 1, Brauer [20] showed that the volume heat capacity ratio
has a distinct influence on the heat transfer rate and proposed an
analogy criterion between the unsteady conjugate heat and mass
transfer. Abtramzon and Borde [21] gave a numerical solution of
the conjugate problem for the case of equal thermal conductivities
and volume heat capacities of the two phases. Baboolal et al. [22]
investigated the conjugate mass transfer of SO2 from air to water
drops. The interface boundary conditions used in [22] are not the
standard interface boundary conditions employed in conjugate
transfer studies. Oliver and Chung [23] analysed the unsteady con-
jugate heat transfer from a spherical droplet or particle in creeping
flow considering the thermal diffusivities ratio equal to 1 and
the volumetric heat capacities ratio varying between 0.333 and 3.
For Henry number equal to 1, the influence of the diffusivities ratio
on the unsteady conjugate mass transfer from a drop in creeping
flow was studied in [24]. In the manner of Oliver and Chung [23],
other cases were analysed in [25–29]. For values of the thermal
conductivity and volume heat capacity ratios varying between
0.01 and 100, it was shown in [30–33] that, for given Pe number,
both the fractional and overall asymptotic Nu numbers depend
on two parameters: thermal conductivity and volume heat
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List of symbols

a radius of the sphere
b radius of the fluid envelope
cP heat capacity
C concentration
CD total drag coefficient
CDF friction drag coefficient
CDP pressure drag coefficient
d diameter of the sphere, d = 2 a
f friction factor
k thermal conductivity
Nu instantaneous overall Nusselt number
Nuh instantaneous local Nusselt number
Pe Peclet number, Pe = Re Pr
Pr Prandtl (Schmidt) number, Pr = m/af

r dimensionless radial coordinate, r*/a, in spherical coor-
dinate system

r� radial coordinate in spherical coordinate system
Re Reynolds number based on the diameter of the sphere,

Re = U0d/m
t time
T temperature
U0 superficial velocity
VR dimensionless radial velocity component

Vh dimensionless tangential velocity component
Z dimensionless temperature defined by the relation,

ZðpÞ ¼
Tf ðpÞ�Tf ;0

Tp;0�;Tf ;0

Greek symbols
a thermal diffusivity
c dimensionless cell boundary, c = b/a
� voidage
U conductivity ratio, kp/kf

m kinematic viscosity
h polar angle in spherical coordinate system
q density
s(p) dimensionless time or Fourier number, s = 4 t af (p)/d2

x dimensionless vorticity
w dimensionless stream function
N volume heat capacity ratio, (qp cP,p)/(qf cP,f)

Subscripts
f refers to the fluid
p refers to particle (sphere)
s refers to the surface of the sphere
0 initial conditions
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capacity ratios. This dependence is complex and does not allow
simple approximations. An analogy criterion, equivalent to that
proposed in [20], between the unsteady conjugate heat and mass
transfer was derived in [33]. For some specific cases, numerical
solutions of the unsteady conjugate heat/mass transfer from a
sphere were obtained in [34–42]. Paschedag et al. [42] have shown
that, for large Pe numbers, the concentration pattern inside the
sphere follows the Kronig–Brink model. The unsteady conjugate
mass transfer from a sphere in the presence of a chemical reaction
was analysed in [43–47]. The influence of the Marangoni convec-
tion on the unsteady conjugate mass transfer from a drop was
recently investigated in [48].

It is readily conceded that, in most real life problems, one often
encounters ensembles of spherical particles rather than a single
sphere. The sphere-in-cell geometry has been widely used as a
simple model for the representation of ensembles of spherical
particles. In spite of its highly idealized nature, the cell-model
offers a reasonable approach at least for macroscopic transport
parameters.

The convective heat/mass transfer in cell models was analysed
in few articles [31,49–56] (here we refer only to non-circulating
spheres). Except for [31] and [56], in all the other articles the tem-
perature/concentration inside the sphere were considered spatially
uniform and constant in time. In [31], only some cases of unsteady
conjugate heat transfer for very low Pe numbers were investigated.
The steady-state solutions for the catalytic reaction were obtained
in [56].

The aim of this paper is to analyse the unsteady conjugate heat/
mass transfer in an ensemble of spherical particles modeled by the
sphere-in-cell geometry. To our knowledge, this problem was not
investigated until now. The influence of the physical properties ra-
tio and voidage on the heat/mass transfer rate is investigated for
Re < 100 (Re is the sphere Reynolds number) and 10 6 Pe 6 1000.

2. Model equations

Consider the steady, axisymmetric flow of a Newtonian incom-
pressible fluid with a superficial velocity U0 and concentration/
temperature Cf,0/Tf,0 past an assemblage of spheres. The initial con-
centration/temperature of the particles, Cp,0/Tp,0, are different from
that of the main stream.

The main problem in modeling of such systems is that of parti-
cle–particle interactions. The cell-models replace the difficult
many-body problem by a simple and conceptually more attractive
one involving only one sphere. Wall effects and/or entry and exit
effects are neglected. The assembly of particles in the fluid is as-
sumed to be uniform and each sphere is fixed in space. The inter-
action of each sphere with its neighbors is modeled by a
hypothetical spherical envelope of fluid of radius b. The size of
the cell (envelope) is given by the voidage of the assemblage, e, as:

b
a
¼ c ¼ ð1� eÞ�1=3

where a is the radius of the sphere.
To define the mathematical model of the present problem, we

consider valid the following statements:

– during the heat/mass transfer process, the volume and shape
of the sphere remain constant;

– the effects of buoyancy and viscous dissipation are negligible
(the dissipation function becomes important in high-speed
flows, i.e. flows with large velocity gradients, and in flows of
fluids with extremely large viscosities; this is not the case
with the present problem);

– the physical properties of the sphere and the fluid are consid-
ered to be uniform, isotropic and constant;

– no emission or absorption of radiant energy;
– no phase change;
– no chemical reaction inside the sphere or in the surrounding

fluid.

The assumptions practiced in this work are those usually
employed in the analysis of the analogy between heat and mass
transfer. For the simplicity and clarity of the presentation, in the
remainder of this work, we will use only the terminology specific
to heat transfer.
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Non-dimensionalizing the basic conservation balances for
momentum and thermal energy using the free stream fluid proper-
ties and the sphere radius, we obtain the governing differential
equations:

– fluid motion
E2ðwÞ ¼ xr sin h ð1aÞ
Re
2
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The boundary conditions are:

– axis of symmetry, h = 0, p
w ¼ x ¼ @Z
@h
¼ @Zp

@h
¼ 0; ð3aÞ
– surface of the sphere, r = 1,
w ¼ 0; Z ¼ Zp;U
@Zp

@r
¼ @Z
@r
; ð3bÞ
– center of the sphere, r = 0
Zp ¼ finite; ð3cÞ
– cell boundary, r = c
w ¼ 1=2r2 sin2 h; x ¼ 2
Vh � sin h

r
ðHappel;½57�Þ or

x ¼ 0ðKubawara;½58�Þ; Z ¼ 0: ð3dÞ

The dimensionless initial conditions are:

s ¼ sp ¼ 0; Zp ¼ 1; Z ¼ 0: ð4Þ

The physical quantities of interest are the dimensionless
sphere average temperature�Zp, the local Nusselt number, Nuh,
the overall Nusselt number, Nu(p) and the fractional Nusselt
numbers, Nuint, Nuext. Considering as driving force the difference
between the instantaneous sphere average temperature and the
free stream temperature, the local and overall Nu numbers are
given by:

Nuh ¼ �
2
�Zp
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����
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sin hdh; if U > 1 ð6aÞ

or

Nu ¼ �2
3

d ln �Zp

dsp
; if U � 1:

Nu ¼ �N
2
3

d ln �Zp

dsp
; if U > 1: ð6bÞ

The sphere average temperature was calculated with the
relation,

�Zp ¼
3
2

Z 1

0

Z p

0
Zp r2 sin hdhdr: ð7Þ

The fractional Nusselt numbers were computed as:

Nuint ¼ �
1

�Zp � �Zp;s

Z p

0

@Z
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����
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where �Zp;s is the dimensionless surface average temperature of the
sphere,

�Zp;s ¼
1
2

Z p

0
Zp

��
r¼1 sin hdh: ð9Þ

The relation between the fractional and overall Nu numbers is:
1

Nu
¼ 1

Nuint
þU

1
Nuext

if U � 1;

1
Nu
¼ 1

U
1

Nuint
þ 1

Nuext
if U � 1:
3. Method of solution

The energy balance equations and the Navier–Stokes equations
were solved numerically. The Navier–Stokes equations being
uncoupled from the energy balance equations can be solved inde-
pendently of them. The algorithm employed is the nested defect-
correction iteration, [59,60]. Eq. (1a) was discretized with the
central second-order accurate finite difference scheme. A double
discretization (upwind and central finite difference schemes),
necessary for the defect-correction iteration, was used for Eq.
(1b). The numerical solutions were calculated on a mesh with
the discretization steps Dh = p/512 and Dr = 1/512.

The boundary conditions [Eq. (3b)] for the dimensionless tem-
perature show that the interface between the two media is not a
surface of discontinuity [61] or, in other words, we have an ideal
contact between the two phases [62]. The numerical technique
used to solve the heat balance equations, under the conditions
mentioned previously, consists of:

– the Eqs. (2a), (2b) are rewritten as a single equation with dis-
continuous coefficients (the existence of the solutions for
equations with discontinuous coefficients was proved in
[63,64]);

– the spatial discretization of the equation with discontinuous
coefficients with conservative finite difference schemes [62,65]
or control volume schemes [66];

– the discrete parabolic equation was solved by the implicit ADI
method.

In order to obtain a positive definite discrete operator (the con-
tinuous operator is positive definite, [62]), for r > 1, a regularized
scheme, with the regularization coefficient given in [67], was used.
For r < 1, the discrete operator is identical to that provided by the
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standard central order scheme. Numerical experiments were made
on grids with the discretization steps Dh = p/64, p/128, p/256,
p/512 and Dr = 1/64, 1/128, 1/256, 1/512. The solutions obtained
on the grid with Dh = p/256 and Dr = 1/256 may be considered
mesh-independent. For this reason, the heat transfer results pre-
sented in the next section were computed on the mesh with
Dh = p/256 and Dr = 1/256. The time step was variable and chan-
ged from the start of the computation to the final stage. The initial
and final values of the time step depend on the parameter values.
4. Results

The cell models describe appropriately the hydrodynamics of
the ensembles of rigid spheres for particle Reynolds numbers not
exceeding �100. The values considered for the Prandtl number
are, Pr P 1, with the mention that 10 6 Pe = Re Pr 6 1000. We con-
sider Pe = 10 as lower limit due to the discussions, for low values of
the Peclet number, about the boundary condition for the dimen-
sionless temperature at r = c [31,55]. To have a rigorous control
over the numerical errors, the maximum value for the Peclet num-
ber was 1000. The conductivity ratio, U, and the volume heat
capacity ratio, N, take values in the range 10�2 to 102. The values
considered for the dimensionless cell boundary, c, are: c = 1.168,
1.25, 1.5, 2, 3. The voidage values corresponding to these c values
are, e = 0.372, 0.488, 0.704, 0.875, 0.963. The present values of the
dimensionless cell boundary are similar to those used in [49]. All
Table 1
Values of the drag coefficients and friction factor.

Re c e Cell model

Happel

CDP CDF CD

0.1 1.168 0.372 19043.5 7240.0 26283.5
1.25 0.488 6292.57 3661.87 9954.44
1.5 0.704 1112.97 1266 2378.97
2 0.875 319.999 551.118 871.117
3 0.963 161.1 315.67 476.77

1 1.168 0.372 1904.5 724.0 2628.5
1.25 0.488 629.36 366.2 995.56
1.5 0.704 111.39 126.63 238.01
2 0.875 32.11 55.17 87.28
3 0.963 16.28 31.72 47.99

10 1.168 0.372 191.65 72.52 264.16
1.25 0.488 63.92 36.76 100.68
1.5 0.704 11.97 12.90 24.86
2 0.875 4.06 5.96 10.03
3 0.963 2.48 3.91 6.396

50 1.168 0.372 43.33 14.98 58.31
1.25 0.488 16.40 7.86 24.26
1.5 0.704 4.41 3.12 7.53
2 0.875 1.95 1.70 3.65
3 0.963 1.25 1.24 2.48

Table 2
Values of the drag coefficients and friction factor for Re = 100.

Re c e Cell model

Happel

CDP CDF CD

100 1.168 0.372 27.22 8.01 35.22
1.25 0.488 11.47 4.37 15.84
1.5 0.704 3.438 1.847 5.285
2 0.875 1.583 1.054 2.637
3 0.963 1.048 0.784 1.832
the computations were made using both cell-models, i.e. Happel
[57] and Kubawara [58].

The numerical values of the drag coefficients and friction factor
calculated in the present work for Re 6 50 are presented in Table 1.
The total drag coefficient was calculated with the relation:

CD ¼
Z p

0
CP ðhÞ sin 2hdhþ 8

Re

Z p

0
xs sin2 hdh; ð10Þ

where the pressure coefficients CP (h) on the surface of the sphere
was computed with the relation,

CP ðhÞ ¼
4
Re

Z h

0

@x
@r

����
r¼1
þxs

� �
dh:

The two integrals in (10) are referred as the pressure and fric-
tion drag coefficients and are denoted CDP and CDF, respectively.
The friction factor, f, was calculated with the relation:

f ¼ 3
4

CD e3

For the same Re values and similar e values, the results pre-
sented in Table 1 agree well with those obtained in [68,69].

The Navier–Stokes equations were also solved numerically
for Re = 100. The results obtained are presented separately in
Table 2. We observe that: (i) the drag coefficients decrease with
the increase in e; (ii) the friction factor does not decrease with
the increase in e. The same results may be obtained from the values
of the drag coefficients presented in [69]. This aspect contradicts
Kubawara

f CDP CDF CD f

1017.8 23394.8 7725.6 31120.4 1205.1
867.74 8273.17 3989.54 12262.7 1068.83
622.54 1618.08 1429.97 3048.05 797.63
437.64 450.7 630.99 1081.69 543.49
319.34 196.74 352.78 549.52 368.06

101.8 2339.7 772.57 3112.18 120.51
86.77 827.43 398.97 1226.40 106.89
62.204 161.90 143.02 304.92 79.69
43.85 45.18 63.15 108.33 54.43
32.15 19.82 35.41 55.23 36.99

10.23 235.28 77.38 312.66 12.11
8.78 83.83 40.05 123.88 10.80
6.498 17.08 14.55 31.63 8.27
5.04 5.35 6.74 12.09 6.05
4.28 2.78 4.20 6.98 4.68

2.26 52.52 15.99 68.51 2.65
2.12 20.75 8.56 29.31 2.56
1.97 5.63 3.48 9.11 2.38
1.83 2.29 1.87 4.16 2.09
1.66 1.34 1.30 2.63 1.76

Kubawara

f CDP CDF CD f

1.364 32.33 8.56 40.89 1.583
1.380 14.03 4.765 18.795 1.638
1.381 4.243 2.064 6.308 1.649
1.325 1.832 1.156 2.988 1.50
1.227 1.117 0.819 1.936 1.297



Table 3
Comparison of the present Nu values with previous studies for spheres with constant
temperature in creeping flow.

c e Pe Nu

Present Pfeffer and Happel [47]

1.25 0.488 1 10.01 10.00
5 10.03 10.02
10 10.03 10.07
50 11.30 11.34
100 13.97 13.52

2 0.875 1 3.99 4.01
5 4.03 4.12
10 4.34 4.40
50 6.48 6.47

3 0.963 1 2.95 3.02
5 3.26 3.30
10 3.75 3.75
50 5.59 5.59
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the experimental data and correlations (Ergun type relations). The
idea, [51], that one consider cells whose volume is constant but whose
shape is a function of the Reynolds number is difficult to implement
numerically.

For this reason, the maximum Re value considered in this work
is, Re = 50. The heat transfer results obtained for Re = 100 are not
presented. We consider that discussions about heat transfer results
calculated with questionable hydrodynamic data should be
avoided. However, it must be mentioned that the heat transfer data
Table 4
Asymptotic values of the overall and fractional Nu numbers for Re = 1,Pe = 100 and c = 1.2

U N

0.01 0.1 0.2 0.5

0 6.56

0.01 6.56a 6.56 6.56 6.56
6.59b 6.59 6.59 6.59

13.28c 14.23 14.28 14.32

0.1 5.99* 6.38 6.39 6.40
6.96 6.71 6.70 6.70
4.26 13.32 13.84 14.15

0.2 3.90* 6.16 6.19 6.21
8.18 6.84 6.83 6.82
1.50 12.38 13.38 13.98

0.5 1.64* 5.37 5.57 5.66
9.28 7.33 7.21 7.16
1.00 10.04 12.18 13.52

1 0.8* 3.99* 4.53 4.80
9.66 8.1 7.81 7.65
0.9 7.87 10.79 12.92

2 0.5* 4.71 6.07 7.04
9.89 8.93 8.59 8.35
0.5 6.40 9.40 12.18

5 0.7* 4.83 6.92 9.01
9.94 9.58 9.39 9.19
0.7 5.38 8.13 11.21

10 0.66 4.70 6.98 9.58
9.95 9.80 9.70 9.58
0.67 4.94 7.54 10.65

100 0.60 4.48 6.97 9.94
9.99 9.98 9.97 9.96
0.60 4.49 7.00 10.05

1 0.587 4.477 6.966 9.993

a Overall Nu number, Nu.
b Internal Nu number, Nuint.
c External Nu number, Nuext.
* Unfrozen asymptotic values.
obtained for Re = 100 do not change the results of the present
work.

There are no data in literature to verify the accuracy of the pres-
ent heat transfer computations. The simulation of the case of
sphere with constant temperature can be viewed as a partial vali-
dation of the present computation. Table 3 shows a very good
agreement between the present computations and the values ob-
tained in [49]. For large Pe numbers, in creeping flow, the relation
derived by Pfeffer [50] provides the following results (Pfeffer [50]
solved the concentration boundary-layer equation in creeping
flow): Nu (Pe = 1000, e = 0.372) = 37.10, Nu (Pe = 1000, e = 0.488) =
28.39, Nu (Pe = 1000, e = 0.704) = 19.93. These values agree very
well with the present calculations for Pe = 1000 and creeping flow
(see Table 6).

For given Re, Pe and e values, the influence of the conductivity
and heat capacity ratios on the asymptotic Nu values is similar to
that observed for a single sphere [30–33]. The decrease in e de-
creases the effect of N but even for small voidage values the effect
of the volume heat capacity ratio cannot be considered negligible.
The thermal wake phenomenon is present. A sample from our
numerical simulations is presented in Table 4 and Fig. 1. Fig. 2a
plots the asymptotic values of the local Nu number for N = 1. In
comparison, Fig. 2b depicts the asymptotic values of the local Nu
number for the single sphere. The results presented in Table 4
and Figs. 1 and 2a were obtained using Happel model. The Kubaw-
ara model provides similar results. The first row in Table 4, i.e.
the row corresponding to U = 0, presents the numerical results
obtained for the internal problem, i.e. the unsteady heat transfer
5.

1 2 5 10 100

6.56 6.56 6.56 6.56 6.56
6.59 6.59 6.59 6.59 6.59

14.33 14.33 14.34 14.34 14.34

6.40 6.40 6.40 6.40 6.40
6.70 6.70 6.70 6.70 6.70

14.25 14.30 14.33 14.33 14.35

6.22 6.22 6.22 6.22 6.22
6.81 6.81 6.81 6.81 6.81

14.17 14.27 14.33 14.35 14.35

5.68 5.70 5.71 5.71 5.71
7.14 7.13 7.13 7.12 7.12

13.97 14.19 14.32 14.36 14.41

4.89 4.93 4.95 4.96 4.96
7.60 7.58 7.57 7.56 7.56

13.68 14.06 14.29 14.37 14.43

7.36 7.52 7.61 7.64 7.67
8.26 8.22 8.20 8.19 8.18

13.28 13.86 14.21 14.33 14.43

9.88 10.35 10.64 10.74 10.83
9.11 9.07 9.04 9.03 9.02

12.63 13.42 13.93 14.10 14.26

10.8 11.48 11.92 12.08 12.21
9.53 9.49 9.47 9.47 9.46

12.18 13.07 13.64 13.84 14.02
11.38 12.33 12.96 13.18 13.38

9.95 9.95 9.94 9.94 9.94
11.60 12.52 13.15 13.36 13.57

11.55 12.477 13.09 13.285 13.49
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Fig. 1. The influence of the conductivity ratio (U) and heat capacity ratio (N) on the asymptotic values of the Nu numbers for Re = 1, Pe = 100 and e = 0.488; (a) overall Nu
number; (b) internal Nu number; (c) external Nu number.
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inside a sphere with constant temperature on the surface. The last
row in Table 4, i.e. the row corresponding to U =1, presents the
numerical results obtained for the external problem, i.e. the un-
steady heat transfer from a sphere with spatially uniform but vary-
ing in time temperature. It must be also mentioned that the
asymptotic Nuint values varies between the same limits as in the
case of the single sphere.

In this work we do not insist on the aspects discussed previ-
ously. The present analysis starts from the following observation
of Pfeffer [50]: predictions based upon creeping flow assumption re-
main accurate for Reynolds number as high as 50. First, we made
numerical simulations with Zp = constant = 1, keeping Pe constant
and varying Re (this kind of investigation was suggested by
[70,71]). The results obtained for Pe = 100 and Pe = 1000 are pre-
sented in Tables 5 and 6. The last row in Tables 5 and 6, i.e. the
row corresponding to c =1 and e = 1, presents the numerical re-
sults obtained for a single sphere. The single sphere results pre-
sented in Tables 5 and 6 agree very well with the values
calculated in [70,71]. Tables 5 and 6 show that:

– for e = 0.372, e = 0.488 and a given Pe number, Nu may be con-
sidered independent from Re;
– for e = 0.704, 0.875, 0.963 and a given Pe number, the influ-
ence of Re on Nu increases with the increase in e;

– the differences between the results provided by Happel and
Kubawara models cannot be considered significant;

– for given Pe and e, the influence of Re increases with the
increase in Pe.

For the unsteady conjugate heat transfer, the effect of voidage
on the asymptotic Nu number values is identical to that observed
in Tables 5 and 6. For e = 0.372, e = 0.488 and a given Pe number,
the asymptotic Nu values do not depend practically on Re. The dif-
ferences between the asymptotic Nu values obtained for different
Re number and a given Pe number are equal to those from Tables
5 and 6.

Fig. 3 plots the asymptotic Nu number against the Pe number for
e = 0.372 (Fig. 3a), e = 0.488 (Fig. 3b) and different values of the
conductivity and volume heat capacity ratios. The data presented
in Fig. 3 were calculated using the Happel model. The Kubawara
model gives almost identical results. The curves corresponding to
U = infinite were obtained by solving the external problem. We de-
picted the case Zp = 1 because in conjugate heat transfer, the
asymptotic Nu number tends to Nu (Zp = 1) when U ?1 and
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Fig. 2. Asymptotic values of the local Nu number for Re = 1, Pe = 100 and N = 1;
(a) cell model for e = 0.488; (b) single sphere.

Table 6
Steady Nu values for spheres with constant temperature at Pe = 1000.

c e Nu

Creeping Re = 0.1 Re = 1 Re = 10 Re = 50

1.168 0.372 35.38a 35.38 35.38 35.39 35.70
35.98b 35.98 35.98 35.997 36.28

1.25 0.488 28.57 28.57 28.57 28.61 29.11
29.24 29.24 29.24 29.27 29.79

1.5 0.704 20.53 20.53 20.54 20.64 21.69
21.25 21.25 21.25 21.35 22.38

2 0.875 15.88 15.88 15.89 16.23 17.81
16.52 16.52 16.52 16.81 18.29

3 0.963 13.38 13.38 13.40 14.17 15.90
13.83 13.83 13.84 14.47 16.11

1 1 10.876 10.935 11.302 12.748 14.499

a Happel model.
b Kubawara model.

Table 5
Steady Nu values for spheres with constant temperature at Pe = 100.

c e Nu

Creeping Re = 0.1 Re = 1 Re = 10 Re = 50

1.168 0.372 16.81a 16.81 16.81 16.81 16.87
16.94b 16.94 16.94 16.94 16.98

1.25 0.488 13.51 13.51 13.51 13.53 13.66
13.70 13.70 13.70 13.72 13.85

1.5 0.704 9.96 9.96 9.96 9.998 10.34
10.22 10.22 10.22 10.25 10.60

2 0.875 7.89 7.89 7.89 8.03 8.64
8.14 8.14 8.15 8.26 8.85

3 0.963 6.76 6.76 6.77 7.10 7.85
6.95 6.95 6.96 7.23 7.95

1 1 5.611 5.638 5.805 6.469 7.271

a Happel model.
b Kubawara model.
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N ?1. Fig. 3 shows that U and N influence the dependence Nu vs.
Pe. The key parameter, with a strong effect, is the conductivity
ratio. For U = 1, the influence of Pe on the asymptotic Nu value is
smaller due to the increased contribution of the heat transfer
inside the sphere.

A common practice in cell models is to derive heat transfer rate
correlations that incorporate the effect of voidage, i.e. free of voi-
dage correlations. When the heat transfer rate does not depend
explicitly on Re, the general form of these correlations is:

Nu ¼ gðPe; eÞ ¼ g1ðPeÞg2ðeÞ

For two e values, e1 and e2, and a given set of Pe values, Pek,
k = 1,2, . . ., the ratio

Nu1

Nu2
¼ g1ðe1Þg2 ðPekÞ

g1ðe2Þg2 ðPekÞ
¼ g1ðe1Þ

g1ðe2Þ
; k ¼ 1; 2; . . .

should be constant. For e1 = 0.488 and e2 = 0.372, this ratio varies in
the range (0.72,0.81) (the results obtained for Zp = 1) and in the
range (0.68, 0.81) (the results obtained for U =1, N = 1).

Fig. 4 plots the asymptotic Nu number against the Pe number for
e = 0.875 and Re = 1, 10, 50. As comparison criterion, the results
obtained for the single spheres and the same Re, U and N values
are depicted in Fig. 5. The data presented in Fig. 4 were calculated
using the Happel model. As in the previous cases, the Kubawara
model gives almost identical results. The curves corresponding to
U = infinite were obtained by solving the external problem.

Fig. 4 shows that, for a given Pe number, Re influences the over-
all asymptotic Nu values. We observe in Fig. 4 that, for a given Pe
number, the influence of Re on asymptotic Nu values is significant
only for Re varying in the range 10–50. Fig. 5 shows that, for the
single sphere and a given Pe number, the influence of Re on asymp-
totic Nu values is also significant for Re varying between 1 and 10.
As in the previous situation the effect of Pe and Re on the asymp-
totic Nu values depends on the value of the conductivity ratio.
For U = 1 and a given Pe number, in both cases (the cell model
and the single sphere), the influence of Re on overall asymptotic
Nu values is less significant.

In almost all experiments that investigate the heat transfer in
ensembles of spherical particles, the heat transfer process is an un-
steady conjugate one. For metallic particles, the conductivity ratio
takes value considerably greater than 1 and N >> 1 (if the fluid is
gas) or N � 1 (if the fluid is liquid). These situations were depicted
in Figs. 3 and 4 by the curves Zp = 1 and (U =1, N = 1), respec-
tively. For ceramic, glass and plastic particles, U � 1 and the
volume heat capacity ratio takes values greater than 0.1. These
cases are represented in Figs. 3 and 4 by the curves corresponding
to U = 1 and different N values. Thus, for usual materials, the
experimental data are expected to fall (approximately) inside
the area limited by the curves plotted in Figs. 3 and 4. In [51]
the experimental values of the Nu number are smaller than the
model predictions. For Re < 50, a similar situation can be viewed
in Table 7.

The heat transfer rate in ensemble of spherical particles
depends on Re, Pr, e and the physical properties of the materials.
This dependence is complex and cannot be approximated by a sin-
gle correlation. Similar analysis should be performed with the new
developed hydrodynamic models [73–75].
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Table 7
Comparison of the present Nu values for spheres with constant temperature with
published experimental correlations; e = 0.488.

Re Pr Nu [72] Nu – present

0.1 100 5.65 10.07a

10.08b

1000 12.18 13.51
13.70

1 10 4.99 10.07
10.07

100 10.75 13.51
13.70

1000 23.16 28.57
29.24

10 1 2.32 10.07
10.07

10 11.74 13.53
13.72

100 23.29 28.61
29.27

50 1 11.43 11.40
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5. Conclusions

The numerical results obtained in this work may be summa-
rized as follows (the next statements are valid for the parameters
values used in this work, i.e. Re < 100 and 10 6 Pe 6 1000):
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11.43
10 24.63 23.15

23.65
100 53.06 49.65

50.93

a Happel model.
b Kubawara model.
– for given values of e, Re and Pr, the influence of the conductiv-
ity and volume heat capacity ratios on the conjugate heat
transfer follows the same rules as in the case of the single
sphere; for U ? 0 the asymptotic Nu values (overall and inter-
nal) tend to the solution of the internal problem; the solution
of the internal problem does not depend on N; for U ?1 the
asymptotic Nu values (overall and external) tend to the solu-
tions of the external problem; the solution of the external
problem depends strongly on N; the decrease in e decreases
the effect of the volume heat capacity ratio;

– the voidage influences the relation between the overall
asymptotic Nu and (Re,Pr); for � < 0.7, one may consider that,
for a given Pe value, the asymptotic Nu values do not depend
explicitly on Re; they depend only on Pe; the dependence Nu
vs. Pe is also influenced by e; for a given Pe, the increase in e
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increases the influence of Re; for large voidage values and a
given Pe number, the influence of Re on the asymptotic over-
all Nu values is similar but not identical with that of the sin-
gle sphere; the dependence Nu vs. Re and Pe is also
influenced by e;

– the Happel and Kubawara models provide almost identical
heat transfer results.
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